PLANO DE ENSINO

ENM0194 – FUNDAMENTOS DE MAGNETOHIDRODINÂMICA
ENM - ENGENHARIA MECÂNICA
FRANCISCO RICARD DA CUNHA
2021/1
ENM0082 – Mecânica dos Fluidos 2; IFD0179 – Física 3 ou IFD0224 – Física 3 Geral, além de exigir do aluno uma boa fluência em cálculo vetorial/tensorial.
Quintas-feiras : 16h às 19h:50min. Aulas expositivas teóricas e atividades no laboratório de Microhodrodinâmica e Reologia (Bancada de Microfluídica – bomba de seringa com fluido condutor em tubo capilar). Vídeos remotos no tópico magnetohidrodinâmica e aplicações. Atividades com duração semanal equivalente a 4 créditos.
Laboratório de Microhidrodinâmica e Reologia – Grupo Vortex - Aplicativo MS-Temas e site: http://www.vortex.unb.br/index.php?option=com_content&view=featured&Itemid=692 .
Sextas 16h-18h via reuniões remotas em salas no MS TEAMS, com horário pré-agendado.
O objetivo desta disciplina verticalizada é contribuir para a formação do aluno de graduação em Engenharia Mecânica em temas interdisciplinares em voga, incrementar o processo de disseminação de novos conhecimentos associados à tecnologias de ponta e de grande abrangência no atual contexto da engenharia mecânica e ajudar numa formação complementar de excelência de alunos que porventura decidirem investir posteriormente em estudos de tópicos mais avançados de escoamentos fluidos em nível de pós-graduação. A disciplina tratará do estudo da interação entre um campo magnético e um fluido eletricamente condutor (não magnético ou polarizado) em movimento com uma vasto leque de aplicações em engenharia e ciências mecânicas como: lubrificação de sistema eixo-mancal de peças móveis, processos de aquecimento e bombeamento de fluidos eletricamente condutores, processos de misturas e levitação de metais líquidos. Os escoamentos MHD envolvem fluidos como metais líquidos, soluções salinas e gases ionizados aquecidos (i.e. magnetohidrodinâmica compressível). Para este fim, é necessário estabelecer os princípios fundamentais envolvidos no acoplamento entre as equações de Maxwell do eletromagnetismo e as equações hidrodinâmicas que regem o movimento do fluido condutor.
A disciplina Fundamentos de Magnetohidrodinâmica será ofertada como disciplina optativa para o curso de Engenharia Mecânica da Faculdade de Tecnologia.
A oferta da disciplina Fundamentos de Magnetohidrodinâmica tem por objetivo prover um incremento na formação do aluno de graduação em Engenharia Mecânica e áreas afins sobre os fundamentos envolvidos na formulação das equações acopladas da hidrodinâmica (equação de Cauchy/Navier Stokes) e eletromagnetismo (equações de Maxwell) para solução de escoamentos laminares de fluidos Newtonianos eletricamente condutores com ênfase em regimes de lubrificação, camada limite, difusão e advecção magnética, convecção natural de um fluido eletricamente condutor, além de propagação de ondas eletromagnéticas. - As aulas teóricas serão expositivas e compostas dos seguintes módulos (MOD): MOD1- Breve histórico da magnetohidrodinâmica e suas aplicações: visão qualitativa da matéria; MOD 2 - Forças e campos hidrodinâmicos e eletromagnéticos; MOD 3 - Teoremas do eletromagnetismo; MOD4 - Leis de conservação do Eletromagnetismo; MOD5- Equações Hidrodinâmicas; MOD 6 - Equações governante de Maxwell e Navier-Stokes para Magnetohidrodinâmica (MHD); MOD7: Aproximação de escoamentos MHD para baixos números de Reynolds magnéticos. - 02 Atividades Experimentais: Escoamento de fluido condutor (solução salina) na bancada Bomba de Seringa - Viscometria Capilar.

- Atividade de interpretação de fenômenos demonstrados em vídeos no tema de escoamentos magnetohidrodinâmicos.

OBS:. O material didático/pedagógico referente às listas de exercícios, aos estudos dirigidos, vídeos, roteiro experimental serão disponibilizado para os estudantes da disciplina ao longo do semestre na forma digitalizada via link:http://www.vortex.unb.br/.

Programa da Disciplina

MOD 1. Breve histórico da magnetohidrodinâmica e sua aplicações: visão qualitativa da matéria;

MOD 2. Forças e campos hidrodinâmicos e eletromagnéticos;

MOD 3. Teoremas do eletromagnetismo;

MOD 4. Leis de conservação do Eletromagnetismo

 $4.1\ \mathrm{eq}.$ Da continuidade, lei de Ampere, lei de

Ohm e lei de Biot-Savart

- 4.2 teorema de Poynting
- 4.3 equações de Maxwell
- 4.4 condições de contorno
- 4.5 força de campo eletromagnética (Lorentz)

tensor de tensões de Maxwell

- 4.6 lei de Faraday e vetor potencial
- 4.7. deslocamento de corrente, ondas eletromagnéticas e ondas de Alfvén

MOD 5. Equações Hidrodinâmicas

- 5.1 Equação de Cauchy e equação de Navier-Stokes
- 5.2 Vorticidade, helicidade hidrodinâmica, momento ang
- 5.3. Lei de Biot-Savart inversão da

vorticidade-velocidade

5.4. Equação geral da vorticidade e taxa de deformação de linhas de vórtices

MOD 6. Equações governantes de Maxwell e

Navier-Stokes para Magnetohidrodinâmica (MHD)

- 6.1 parâmetros adimensionais em MHD
- 6.2 MHD incompressível uma analogia com vorticidade
- 6.3 difusão e advecção de um campo magnético
- 6.4. Teorema de Alfvén para condutores ideais
- 6.5. Invariância da helicidade magnética em MHD ideal

MOD 7. Aproximação de escoamentos MHD

para baixos números de Reynolds magnéticos

- 7.1 escoamento unidirecionais de fluidos condutores em regime de lubrificação
- 7.2 camada limite MHD (Hartmann) e escoamentos em dutos
- 7.3 convecção natural em campos magnéticos

Legenda - MOD: módulo

- 29/07: Primeiro dia de aula da disciplina;
- 05/08: **MOD 1, MOD2**
- **12/08, 19/08, 26/08**: MOD3, MOD4
- **2/09, 9/09**: MOD4
- 9/09: Entrega de todos os estudos dirigidos dos MODs 1 a 4
- 16/09, 23/09: MOD5
- **30/09, 7/10, 14/10, 21/10:** MOD6 e
- Experimento na Bancada de Seringa Fluido condutor
- **21/10, 28/10, 04/11**: MOD7
- **05/11:** Prova de Avaliação Final e entrega de estudos dirigidos MODs 5 a 7
- 06/11: Último dia de aula do semestre 1/2021

Fig 1: Calendário UnB - 1/2021

			JULH	0			AGOSTO								SETEMBRO								OUTUBRO							NOVEMBRO						
D	s		Q	Q	s	S	D	S		Q	Q	S	S	D	S		Q	Q	S	S	D	S		Q	Q	S	S	D	S		Q	Q	S	S		
				1	2	3	1	2	3	4	5	6	7				1	2	3	4						1	2				3	4	5	6		
4	5	6	7	8	9	10	8	9	10	11	12	13	14	5	6		8	9	10	11	3	4	5	6		8	9	7	8	9	10	11	12	13		
11	12	13	14	15	16	17	15	16	17	18	19	20	21	12	13	14	15	16	17	18	10	11	12	13	14	15	16	14	15	16	17	18	19	20		
18	19	20	21	22	23	24	22	23	24	25	26	27	28	19	20	21	22	23	24	25	17	18	19	20	21	22	23	21	22	23	24	25	26	27		
25	26	3 27	28	29	30	31	29	30	31					26	27	28	29	30			24	25	26	27	28	29	30	28	29	30						
01	- Prime	eiro dia d	e aula.				13 – 25% de realização das aulas								07 – Independência do Brasil 10 – 50% de realização das aulas								31 07 – 75% de realização das aulas 12 – Nossa Senhora Aparecida 28 – Dia do Servidor Público.							02 – Finados 06 – Último dia de aula 15 – Proclamação da República						

- ED: Média dos Estudo Dirigidos do Semestre
- EXP: Experimento Bomba de Seringa Fluido Condutor
- PFA: Prova Final de Avaliação
- PA: Participação do Aluno

Critério de Avaliação

Calendário de

Atividades

MÉDIA FINAL (MF): (0.3 ED + 0.2 EXP + 0.4 PFA + 0.1PA)

Obs: ED, EXP, PFA e PA variam de 0 a 10 na equação acima.

Aprovação na disciplina MF ≥ 5

Controle de frequência

Presença do aluno nas aulas da disciplina, na atividade experimental e nas avaliações. Alunos com mais de 25% de ausência serão reprovados com SR.

Principais Bibliografias Recomendadas

- Introduction to Magnetohydrodynamics, P.A.
 Davidson, (2017), CUP-Cambridge, UK.
- Introduction to Eletrodynamics, D.J.
 Griffiths, (2017), CUP-Cambridge, UK.
- Electrodynamics of continuous media, L.D. Landau and E.M. Lifshitz, (1987), Pergamon Press – Oxford, UK.
- Introduction to Fluid Dynamics, G.K. Batchelor, (1967), CUP-Cambridge, UK.
- Fluid Dynamics, R.H.F. Pao, (1966), C.
 E. Merrill, Inc, Columbus, Ohio.